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We present a theoretical study of time-dependent quantum transport in a resonant tunnel junction coupled to
a nanomechanical oscillator within the nonequilibrium Green’s function technique. An arbitrary voltage is
applied to the tunnel junction and electrons in the leads are considered to be at zero temperature. The transient
and the steady-state behavior of the system are considered here in order to explore the quantum dynamics of
the oscillator as a function of time. The properties of the phonon distribution of the nanomechanical oscillator
strongly coupled to the electrons on the dot are investigated using a nonperturbative approach. We consider
both the energy transferred from the electrons to the oscillator and the Fano factor as a function of time. We
discuss the quantum dynamics of the nanomechanical oscillator in terms of pure and mixed states. We have
found a significant difference between a quantum and a classical oscillator. In particular, the energy of a
classical oscillator will always be dissipated by the electrons whereas the quantum oscillator remains in an
excited state. This will provide useful insight for the design of experiments aimed at studying the quantum
behavior of an oscillator.
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I. INTRODUCTION

Nanoscopic physics has been a subject of increasing ex-
perimental and theoretical interest for its potential applica-
tions in nanoelectromechanical systems �NEMSs�.1–3 The
physical properties of these devices are of crucial importance
in improving our understanding of the fundamental science
in this area including many-body phenomena.4 One of the
most striking paradigms exhibiting many-body effects in me-
soscopic science is quantum transport through single elec-
tronic levels in quantum dots and single molecules5–8

coupled to external leads. Realizations of these systems have
been obtained using semiconductor beams coupled to single-
electron transistors �SETs� and superconducting single-
electron transistors �SSETs�,9,10 carbon nanotubes,11 and,
most recently, suspended graphene sheets.12 Such systems
can be used as a direct measure of small displacements,
forces, and mass in the quantum regime. The quantum trans-
port properties of these systems require extremely sensitive
measurement that can be achieved by using SETs, or a reso-
nant tunnel junction, and SSETs. In this context, NEMS are
not only interesting devices studied for ultrasensitive trans-
ducers but also because they are expected to exhibit several
exclusive features of transport phenomena such as avalanch-
elike transport and shuttling instability.5,13 The nanomechani-
cal properties of a resonant tunnel junction coupled to an
oscillator14 or a SET �Refs. 15 and 16� coupled to an oscil-
lator are currently playing a vital role in enhancing the un-
derstanding of NEMS.

The nanomechanical oscillator coupled to a resonant tun-
nel junction or SET is a close analog of a molecule being
used as a sensor whose sensitivity has reached the quantum
limit.1–3,9,17 The signature of quantum states has been pre-
dicted for the nanomechanical oscillator coupled to the SETs
�Ref. 9� and SSETs.10,18 In these experiments, it has been
confirmed that the nanomechanical oscillator is strongly

affected by the electron transport in the circumstances where
we are also trying to explore the quantum regime of NEMS.
In this system, electrons tunnel from one of the leads to the
isolated conductor and then to the other lead. Phonon-
assisted tunneling of nonresonant systems has mostly been
shown by experiments on inelastic tunneling spectroscopy
�ITS�. With the advancement of modern technology, as com-
pared to ITS, scanning tunneling spectroscopy �STS� and
scanning tunneling microscopy �STM� have proved more
valuable tools for the investigation and characterization of
molecular systems19 in the conduction regime. In STS ex-
periments, significant signatures of the strong electron-
phonon interaction have been observed20,21 beyond the estab-
lished perturbation theory. Hence, a theory beyond master-
equation approach or linear response is necessary. Most of
the theoretical work on transport in NEMS has been done
within the scattering theory approach �Landauer� but it dis-
regards the contacts and their effects on the scattering chan-
nel as well as effect of electrons and phonons on each
other.22 Very recently, the nonequilibrium Green’s function
�NEGF� approach23–25 has been growing in importance in the
quantum transport of nanomechanical systems.14–17,26,27 An
advantage of this method is that it treats the infinitely ex-
tended reservoirs in an exact way,28 which may lead to
a better understanding of the essential features of NEMS.
NEGF has been applied in the study of shot noise in chain
models29 and disordered junctions30 while noise in Coulomb
blockade Josephson junctions has been discussed within a
phase correlation theory approach.31 In the case of an inelas-
tic resonant tunneling structure, in which strong electron-
phonon coupling is often considered, a very strong source-
drain voltage is expected for which coherent electron
transport in molecular devices has been considered by
some workers32 within the scattering theory approach. In-
elastic effects on the transport properties have been studied
in connection with NEMS and substantial work on this issue
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has been done, again within the scattering theory approach.22

Recently, phonon-assisted resonant tunneling conductance
has been discussed within the NEGF technique at zero
temperature.33 To the best of our knowledge, in all these
studies, time-dependent quantum transport properties of a
resonant tunnel junction coupled to a nanomechanical oscil-
lator have not been discussed so far. The development of
time-dependent quantum transport for the treatment of non-
equilibrium system with phononic as well as fermionic de-
gree of freedom has remained a challenge since the 1980s.34

Generally, time-dependent transport properties of mesos-
copic systems without nanomechanical oscillator have been
reported35 and, in particular, sudden joining of the leads with
quantum dot molecule has been investigated34,36 for the case
of a noninteracting quantum dot and for a weakly Coulomb
interacting molecular system. Strongly interacting systems in
the Kondo regime have been investigated.37,38 More
recently,39 the transient effects occurring in a molecular
quantum dot described by an Anderson-Holstein Hamil-
tonian have been discussed. To this end, we present the fol-
lowing study.

In the present work, we shall investigate the time evolu-
tion of a quantum dot coupled to a single vibrational mode as
a reaction to a sudden joining to the leads. We employ the
nonequilibrium Green’s function method in order to discuss
the transient and steady-state dynamics of NEMS. This is a
fully quantum-mechanical formulation whose basic approxi-
mations are very transparent, as the technique has already
been used to study transport properties in a wide range of
systems. In our calculation, inclusion of the oscillator is
not perturbative as the STS experiments20,21 are beyond
the perturbation theory. So a nonperturbative approach is
required beyond the quantum master equation26,27,40 or lin-
ear response. Hence, our work provides an exact analytical
solution to the current-voltage characteristics, including
coupling of leads with the system, very small chemical-
potential difference, and both the right and left Fermi-level
response regimes. For simplicity, we use the wide-band
approximation,24,34,41,42 where the density of states in the
leads and hence the coupling between the leads and the dot is
taken to be independent of energy. Although the method we
are using does not rely on this approximation, this provides a
way to perform transient transport calculations from first
principles while retaining the essential physics of the elec-
tronic structure of the dot and the leads. Another advantage
of this method is that it treats the infinitely extended reser-
voirs in an exact way in the present system, which may give
a better understanding of the essential features of NEMS in a
more appropriate quantum-mechanical picture.

II. MODEL CALCULATIONS

We consider a single quantum dot connected to two iden-
tical metallic leads. A single oscillator is coupled to the
electrons on the dot and the applied gate voltage is used to
tune the single level of the dot. In the present system, we
neglect the spin degree of freedom and electron-electron

interaction effects and consider the simplest possible model
system. We also neglect the effects of finite electron tempera-
ture of the lead reservoirs and damping of the oscillator. Our
model consists of the individual entities such as the single
quantum dot and the left and right leads in their ground states
at zero temperature. The Hamiltonian of our simple
system33,41,42 is

Hdot-ph = ��0 + ��b† + b��c0
†c0 + ��0�b†b + 1

2� , �1�

where �0 is the single-energy level of electrons on the dot
with c0

† ,c0 the corresponding creation and annihilation opera-
tors, the coupling strength, �=�l, with �=eE, is the electro-
static field between electrons on the dot and an oscillator,
seen by the electrons due to the charge on the oscillator, l
=�� /2m�0 is the zero-point amplitude of the oscillator, �0 is
the frequency of the oscillator, and b† ,b are the raising and
lowering operator of the phonons. The remaining elements of
the Hamiltonian are

Hleads = �
j

� jcj
†cj , �2�

Hleads-dot =
1

�N
�

j

V��t��cj
†c0 + c0

†cj� , �3�

where we include time-dependent hopping V��t� to enable us
to connect the leads �=L ,R to the dot at a finite time. For the
time-dependent dynamics, we shall focus on sudden joining
of the leads to the dot at t=0, which means V��t�=V��t�,
where ��t� is the Heaviside unit step function. N is the total
number of states in the lead and j represents the channels in
one of the leads. For the second lead, the Hamiltonian can be
written in the same way. The total Hamiltonian of the system
is thus H=Hdot-ph+Hleads+Hleads-dot. We write the eigenfunc-
tions of Hdot-ph as

	m�K,x0 � 0� = Am exp�−
l2K2

2
�Hm�lK�exp�− iKx0� ,

�4�

	n�K,x0 = 0� = An exp�−
l2K2

2
�Hn�lK� , �5�

for the occupied, x0�0, and unoccupied, x0=0, dots, respec-
tively, where x0=� /2m�0

2 is the shift of the oscillator due to
the coupling to the electrons on the dot, where An

=1 /��
2nn ! l, Am=1 /��
2mm ! l, and Hn�lK� are the usual
Hermite polynomials. Here, we have used the fact that the
harmonic-oscillator eigenfunctions have the same form in
both real and Fourier space �K�.

In order to transform between the representations for the
occupied and unoccupied dots, we require the matrix with
elements �nm=		n

��K ,x0=0�	m�K ,x0�0�dK, which may
be simplified43 as
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�n,m =
l

�
2m+nn!m!

�
 exp�− l2K2�Hn
��lK�Hm�lK�exp�iKx0�dK �6�

=�2m−nn!

m!
exp�−

1

4
x2��1

2
ix�m−n

Ln
m−n�1

2
x2� �7�

for nm, where x=x0 / l and Ln
m−n�x� are the associated La-

guerre polynomials. Note that the integrand is symmetric in
m and n but the integral is only valid for nm. Clearly, the
result for n�m is obtained by exchanging m and n in Eq. �7�
to obtain

�n,m =�2m−n min�n,m�!
max�n,m�!

exp�−
1

4
x2��1

2
ix�m−n

�Lmin�n,m�
m−n �1

2
x2� . �8�

In order to calculate the analytical solutions and to discuss
the numerical results of the transient and steady-state dynam-
ics of the nanomechanical systems, our focus in this section
is to derive an analytical relation for the time-dependent ef-
fective self-energy and the Green’s functions. In obtaining
these results, we use the wide-band approximation only for
simplicity, although the method we are using does not rely
on this approximation, where the retarded self-energy of the
dot due to each lead is given by24,34

��
r �t1,t2� = V�

��t1�g�,�
r �t1,t2�V��t2� , �9�

where �=L ,R represent the left and right leads and the
Green’s function in the leads for the uncoupled system is

g�,�
r �t1,t2� =

1

N
�

j

g�,j
r �t1,t2�

= − in���t1 − t2�

−�

+�

d�� exp�− i���t1 − t2�� ,

with the fact that � j �	−�
+�Nn�d��, where j stands for every

channel in each lead and n� is the constant number density of
the leads.

Now using the uncoupled Green’s function into Eq. �9�,
the retarded self-energy may be written as

��
r �t1,t2� = − in���t1 − t2�

�

−�

+�

d��V�
��t1�exp�− i���t1 − t2��V��t2�

�10�

=− in�V�
��t1�V��t2���t1 − t2�


−�

+�

d�� exp�− i���t1 − t2�� ,

=− in�V�
��t1�V��t2���t1 − t2�2
��t1 − t2� . �11�

Now we use the fact that V��t1�= V��t1� and V��t2�
= V��t2�. Then the above expression can be written as

��
r �t1,t2� = − 1

2 i����t2���t1 − t2� , �12�

where ��=4
V2n� is the damping factor ��L=�R=��.
Similarly, ��

a�t1 , t2�= ���
r �t1 , t2���=+ 1

2 i�� ��t2���t1− t2�.
We solve Dyson’s equation using Hdot-leads as a perturba-

tion. In the presence of the oscillator, the retarded and ad-
vanced Green’s functions on the dot, with the phonon states
in the representation of the unoccupied dot, may be written
as

Gn,n�
r �t,t1� = �

m

�n,mgm
r �t,t1��n�,m

� , �13�

Gn,n�
a �t2,t�� = �

k

�n,kgk
a�t2,t���n�,k

� ,

where gm�k�
r�a� is the retarded �advanced� Green’s function on

the occupied dot coupled to the leads which may be written
as

gm
r �t,t1� = − i��t − t1�exp�− i��m − i���t − t1��, t1 � 0

�14�

gk
a�t2,t�� = + i��t� − t2�exp�− i��k + i���t2 − t���, t2 � 0,

�15�

with �m=�0+ �m+ 1
2 ���0−�, �k=�0+ �k+ 1

2 ���0−�, and �
=�2 /2m�0

2.
The above Eqs. �12�–�15� will be the starting point of our

examination of the time-dependent response of the coupled
system. These functions are the essential ingredients for the-
oretical considerations of such diverse problems as low and
high voltages, coupling of electron and phonons, and tran-
sient and steady-state phenomena.

III. TIME-DEPENDENT DOT POPULATION �(t)

The density matrix is related to the dot population through
��t�=�n�n,n�t , t�, where the density matrix �n,n�t , t�=
−iGn,n�

� �t , t��, for t= t� and n=n�. Gn,n�
� �t , t�� is the lesser

Green’s function23,24,34 on the dot including all the contribu-
tions from the leads. The lesser Green’s function for the dot
in the presence of the nanomechanical oscillator is given by

Gn,n�
� �t,t�� = �

n0,n0�,�


 
 dt1dt2Gn,n0

r �t,t1��n0,n0�,�
� �t1,t2�Gn0�,n�

a �t2,t��, t and t� � 0, �16�
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whereas, for t and t��0, the Gn,n�
� �t , t�� is equal to zero and

Gn,n�
� �t , t�� includes all the information of the nanomechani-

cal oscillator and electronic leads of the system and
n0 ,n0� ,n ,n� are the oscillator indices. The lesser self-energy,
�n0,n0�,�

� �t1 , t2�, contains electronic and oscillator contribu-

tions. The electronic contributions are nonzero only when t1
and t2�0. As the oscillator is initially in its ground state,
only the n0=n0�=0 term gives a nonzero contribution to the
lesser self-energy. The lesser self-energy for the dot may be
written as

�0,0,�
� �t1,t2� = V�

��t1�g�,�
� �t1,t2�V��t2� ,

with

g�,�
� �t1,t2� =

1

N
�

j

g�,j
� �t1,t2�

= 

−�

+�

d��f�����2in� exp�− i���t1 − t2�� ,

where f����� is the Fermi distribution functions of the left
and right leads, which have different chemical potentials un-
der a voltage bias. For the present case of zero temperature,
the lesser self-energy may be recast in terms of the Heaviside
step function ��x� as

�0,0,�
� �t1,t2� = i��


−�

+� d��

2

���F� +

1

2
��0 − �����t1���t2�exp�− i���t1 − t2�� , �17�

where �0,0,�
r,�a�,����t1 , t2� are all nonzero only when both times �t1 , t2� are positive t1 , t2�0 and �F� is the Fermi energy on each

of leads.
The density matrix �n,n�t , t� can be calculated by using Eqs. �12�–�15� and �17� in Eq. �16� at t= t� and n=n� as

�n,n�t,t� = − i �
�,m,k



0

t 

0

t

dt1dt2�n,m�0,m
�

�exp�− i��m − i���t − t1���i�

−�

�F� d��

2

exp�− i���t1 − t2����0,k�n,k

� exp�− i��k + i���t2 − t�� .

Although gr,�a��t1 , t2� is nonzero for t�0, it is never required due to the way it combines with �0,0,�
r,�a�,����t1 , t2�. By carrying out

the time integrations, the resulting expression is written as

�n,n�t,t� =
�

2

�

�,m,k



−�

�F�

d��

�n,m�0,m
� �0,k�n,k

�

��� − �k − i����� − �m + i��

��1 + exp�i��k − �m + 2i��t� − exp�− i��� − �k − i��t� − exp�i��� − �m + i��t�� .

The integral over the energy in the above equation is carried out.44 The final result for the density matrix is written as

�n,n�t,t� =
�

2

�
m,k

�n,m�m,0
� �0,k�n,k

�

�k − �m + 2i�
�Ymk

L + Ymk
R + Zmk

L + Zmk
R � , �18�

where we have added the contribution from the right and the left leads, which can be written in terms of � as

Ymk
� = �1 + exp�i��k − �m + 2i��t���ln��F� − �k − i�� − ln��F� − �m + i���

= �1 + exp�i��k − �m + 2i��t���1

2

ln���F� − �k�2 + �2�
ln���F� − �m�2 + �2�

+ i�tan−1��F� − �k

�
� + tan−1��F� − �m

�
� + 
�� ,

Zmk
� = exp�i��k − �m + 2i��t��− Ei�i��F� − �k − i��t� + Ei�− i��F� − �m + i��t�� + �Ei�i��F� − �m + i��t� − Ei�− i��F� − �k − i��t�� ,

with �F� being the right and the left Fermi levels and Ei�x�
the exponential integral function. Special care is required in
evaluating the Ei�x� to choose the correct Riemann sheets in
order to make sure that these functions are consistent with

the initial conditions ��0�=0 and are continuous functions of
time and chemical potential. The same applies to complex
logarithms in the first, apparently simpler, form for Ymk

� .
Now using Eq. �18�, the dot population may be written as
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��t� = �
n

�n,n�t,t� =
�

2

�

n,m,k

�n,m�m,0
� �0,k�n,k

�

�k − �m + 2i�

��Ymk
L + Ymk

R + Zmk
L + Zmk

R � .

IV. TIME-DEPENDENT CURRENT FROM LEAD �

The particle current I� into the interacting region from the
lead is related to the expectation value of the time derivative
of the number operator N�=��jc�j

† c�j as24,34–36

I� = − e� d

dt
x� =

− ie

�
��H,x�� �19�

and the final result for the current through each of the leads is
written as �see the Appendix�

I��t� =
e�

2
�
�
m

�0,m�0,m
� �Im

1� + Im
2L + Im

2R� , �20�

where

Im
1� = 2�tan−1� �F� − �m

�
� +




2
� − i�Ei�+ i��F� − �m + i��t� − Ei�− i��F� − �m − i��t�� ,

Im
2� = − �1 + exp�− 2�t���tan−1��F� − �m

�
� +




2
� −

1

2
i exp�− 2�t��Ei�+ i��F� − �m − i��t� − Ei�− i��F� − �m + i��t��

+
1

2
i�Ei�+ i��F� − �m + i��t� − Ei�− i��F� − �m − i��t�� ,

where in calculating the left current, we need Im
1L and both

the contributions Im
2L and Im

2R and for the right current Im
1L is

replaced by Im
1R. As before, special care is required in evalu-

ating the Ei�x� to choose the correct Riemann sheets in order
to make sure that these functions are consistent with the ini-
tial conditions I��t�=0 and are continuous functions of time
and chemical potential.

V. AVERAGE ENERGY AND FANO FACTOR

To calculate the energy transferred from the electrons to
the nanomechanical oscillator, we return to the density ma-
trix �n,n�t , t� given in Eq. �18�. We may therefore use the
lesser Green’s function or density matrix to calculate the en-
ergy transferred to the oscillator as

Eph = �n��0� =

�
n

n��0�n,n�t,t�

�
n

�n,n�t,t�
. �21�

Note that the normalization in Eq. �21� is required as the bare
density matrix contains both electronic and oscillator contri-
butions. The trace eliminates the oscillator part, leaving the
electronic part. In order to further characterize the state of
the nanomechanical oscillator, we investigate the Fano factor
for the change of average occupation number, �n�, as a func-
tion of time. The corresponding relation for the Fano factor
is given by45

F =
�n2� − �n�2

�n�
, �22�

where �n�=�nn�n,n�t , t� /�n�n,n�t , t� and �n2�
=�nn2�n,n�t , t� /�n�n,n�t , t�, with the average evaluated using
the diagonal element of the density matrix on the quantum
dot.

VI. DISCUSSION OF RESULTS

The dot population, net current through the system, total
current into the system, average energy, and Fano factor of a
resonant tunnel junction coupled to a nanomechanical oscil-
lator are shown graphically as a function of time for different
values of coupling strength, tunneling rate, and voltage bias.
The following parameters1–10,13–18,31 were employed: the
single energy level of the dot �0=0.5 and the characteristic
frequency of the oscillator ��0=0.1. These parameters will
remain fixed for all further discussions and have same di-
mension as of ��0. The time scale of the electrons is 2
� /�
while that of the oscillator is 2
 /�0. We are interested in
small and large values of tunneling from the leads, different
values of the coupling strength between the electrons and the
nanomechanical oscillator, and of the left chemical potential
0�FL1. However, in most of this work, we will focus on
the regime of small tunneling, ����0. In doing so we are
aware that this regime is probably inaccessible with current
devices. However, it is surely only a matter of time before
this difficulty is overcome and, in any case, it is easier to
develop an understanding of the underlying physics without
the smearing due to large �.

The nanomechanical oscillator-induced resonance effects
are clearly visible in the numerical results. It must be noted
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that we have obtained these results in the regime of both
strong and zero or weak coupling between the nanomechani-
cal oscillator and the electrons on the dot. The tunneling of
electrons between the leads and the dot is considered to be
symmetric ��R=�L� and we assume that the leads have con-
stant density of states.

The dot population is shown in Fig. 1 as a function of
time in order to see the transient and steady-state dynamics
of the system. We consider here empty, half full, and occu-
pied states of the system for fixed values of �=0.1, �
=0.05, by choosing the right and the left Fermi-level pairs �0,
0�, �0, 1�, and �1, 1�, respectively. First, when both the Fermi
levels are below the dot energy, then the dot population rises
initially for a short time and for long times settles at a small
but finite value. This is not quite empty because the finite �
allows some tunneling onto the dot. Second, when the left
Fermi level is above the dot energy, then the dot population
settles in a partially full �half full� state. Third, when both the
Fermi levels are above the dot energy, it is completely full
for a short time but for long time is not quite full, again due
to the dot coupling with the leads. These results are consis-
tent with the particle-hole symmetry of the system as the
empty state of the system is not empty and the occupied state
is not completely full, while the partially full is roughly half
full.

In Fig. 2, we have shown the total current flowing onto
the dot as a function of time for fixed values of �=0.1, �
=0.05, �FR=0, and of the left Fermi level 1. This current
�solid line� is equivalent to the rate of change of the dot
population �dashed line� for the same parameters. In this fig-
ure, we cannot distinguish the solid and the dashed line. This
confirms that our analytical results are consistent with the
equation of continuity, IL�t�+ IR�t�= d

dt��t�, and hence, with
the conservation laws for all parameters.

In Fig. 3, we have shown the net current �IL�t�− IR�t��
flowing through the system as a function of both time and of
the left Fermi level for two different values of coupling
strength: �=0.02 to �=0.08 and for small and large values

of �. The most obvious feature is the step as �FL crosses the
dot energy and current is able to flow through the dot. In
addition, we observe simple oscillations for weak-coupling
strength and weak tunneling. With increasing coupling
strength, the structure of the oscillations becomes more com-
plicated as shown in Fig. 3�b�. In order to interpret this com-
plicated structure, we have a two-step discussion: first, we

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

Time

Ρ�
t�

FIG. 1. Time-dependent dot population ��t� against time for
different pairs of the right and the left Fermi energies �0,0�, �0,1�,
and �1,1�. Dotted line corresponds to empty, dashed line corre-
sponds to half full, and solid line corresponds to almost full state of
the dot. Parameters: �0=0.5, ��0=0.1, �=0.1, �=0.05. Units:
all the parameters have same dimension as of ��0.
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FIG. 2. Total current �IL�t�+ IR�t�� flowing onto the dot as a
function of time for fixed values of �0=0.5, ��0=0.1, �
=0.1, �=0.05, �FR=0, �FL=1. This current �solid line� is
equivalent to the rate of change of dot population d

dt��t� �dashed
line� as a function of time for same parameters as of current. In this
figure, solid and dashed lines have same values at all points. Units:
all the parameters have same dimension as of ��0.
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FIG. 3. �Color online� Net current �IL�t�− IR�t�� flowing through
the system as a function of both time and of the left Fermi level for
two different values of coupling strength: �a� �=0.02 and �b� 0.1.
Parameters: �0=0.5, �FR=0, �FL=1, ��0=0.1, �=0.01. Units:
all the parameters have same dimension as of ��0.
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have plotted the net current as a function of time in Fig. 4
with fixed values of the Fermi level, �FL=1, �FR=0, tunnel-
ing energy, �=0.01, and for different values of coupling
strength: �=0.02 and �=0.08. In this figure, in the limit of
weak coupling, the oscillations are again simple while for the
strong-coupling limit, there is a beating pattern in the oscil-
lations. We note that the frequency of the simple oscillations
is ��FL−�0� and these oscillations are present even in the
limit of weak coupling. We conclude that this is a purely
electronic process �plasmon oscillations�. In order to gain a
better understanding of the oscillations, we consider the

Fourier-Laplace transform of the current, Ĩ���=	0
�ei�tI�t�dt,

where I�t�= IL�t�− IR�t�.
Here we have plotted �Ĩ���2, which has the advantages

that it suppresses a strong peak at �=0 while making it
easier to relate the �→0 and �→� limits to t→� and t
→0, respectively. We expect to see a peak at any frequency
where there is an oscillation in I�t�, independently of the
phase of that oscillation.

From Fig. 5�a�, for weak coupling, we see two peaks,
which are easily associated with electron and hole oscilla-
tions with frequencies �= �F− ��0−��. With increased cou-
pling, Fig. 5�b�, we observe additional features at multiples
of �0 to the left of the electron peak and to the right of the
hole peak, which we can associate with the creation of
phonons. The corresponding “anti-Stokes” features are ab-
sent as we are working at T=0. Hence, we may conclude that
the beats in Fig. 4 are only indirectly due to the oscillator,
through �: the beating is due to the difference between the
electron and hole oscillations.

In Fig. 6, we have plotted the net current for fixed values
of �FL=1, �FR=0, tunneling energy, �=��0, and for different
values of coupling strength: �=0.02 and �=0.08. We have
found that in the regime �����0�, the effects of the oscil-
lator are not apparent and the period of the nanomechanical
oscillator cannot be resolved. Why can the period of the
oscillator not be resolved by the electrons in this limit? In
this regime, electrons spend less time on the dot than the
period of the oscillator. Therefore, electrons do not resolve

the period of the nanomechanical oscillator. Now we will
focus only in the regime of small tunneling, ����0, for
further discussion in order to analyze the dynamics of the
nanomechanical oscillator and the effects of coupling be-
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FIG. 4. Net current �IL�t�− IR�t�� flowing through the system as
a function of time for two different values of coupling strength: �
=0.02 �dotted line� and 0.08 �solid line�. Parameters: �0=0.5, �FR

=0, �FL=1, ��0=0.1, �=0.01. Units: all the parameters have
same dimension as of ��0.
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FIG. 5. Fourier-Laplace transform of the net current ��ĨL���
− ĨR����2 flowing through the system as a function of frequency �
for three different values of the left Fermi level �FL

=0.7�dotted line� ,0.8�dashed line� ,0.9�solid line� and coupling
strength, �a� �=0.01 and �b� �=0.08. Parameters: �0=0.5, �FR

=0, ��0=0.1, �=0.001. Units: all the parameters have the same
dimensions as ��0.
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FIG. 6. Net current �IL�t�− IR�t�� flowing through the system as
a function of time for two different values of coupling strength: �
=0.02 �dotted line� and 0.08 �solid line�, and �=0.1. All the param-
eters are same as in Fig. 4 and have same dimension as of ��0.
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tween the electrons and the nanomechanical oscillator.
Next, we have shown the average energy of the nanome-

chanical oscillator as a function of time and of the left Fermi
energy in Fig. 7 for fixed values of tunneling �=0.01, �FR
=0, and for different values of coupling strength �=0.02 and
�=0.08. We found damped oscillations for short times and
constant energy for long times. This constant average energy
increases with increasing Fermi level. Why have we found
this particular type of structure? We know that the nanome-
chanical oscillator potential seen by the electrons on the dot
is independent of time when the oscillator is in any of its
pure eigenstates. Otherwise, when the oscillator is not in a
pure state, the potential seen by the electrons is time depen-
dent. In the former case, the electrons are scattered elasti-
cally by the time-independent potential and in the latter case
the scattering process is inelastic because the time-dependent
potential allows the transfer of energy between the two. We
observe that the constant average energy also has steps as a
function of the left Fermi level which become more pro-
nounced with increasing coupling strength. Hence, the oscil-
latory part of the behavior of the mechanical oscillator is
damped by coupling with the electrons on the dot but the
constant part is not. The damping mechanism in the transient
dynamics is due to transfer of energy from the nanomechani-
cal oscillator to the electrons on the dot while when the os-
cillator is in any of the pure eigenstate then there is no
mechanism for the transfer of energy between the two. This

same physical phenomenon also applies to the net current
flowing through the dot as well. This appears to be a quan-
tum phenomenon in the study of nanomechanical systems. In
order to study this more carefully, we look at the Fourier-
Laplace transform of �nGn,n

� and �nn�0Gn,n
� , respectively.

Figure 8�a� shows the dot population. There are two main
features: a peak at �=0 representing the long-time behavior
and a step between �FL− ��0−����� �FR− ��0−��, the
electron and hole frequencies discussed earlier. Thus, the dot
population approaches its asymptotic value as sin���eht� / t,
where ��eh is the difference between the electron and hole
frequencies.

Figure 8�b� shows the convolution of the dot population
with the oscillator energy. This is difficult to deconvolute
analytically but easy to interpret. We first note that the con-
volution of a step such as in Fig. 8�a� with a delta function at
�= ��0 gives a step shifted by ��0. We can thus interpret
the additional features in Fig. 8�b� as due to the oscillator at
�=�0. The sharp peak at �0 has a width of �. This confirms
our initial interpretation of Fig. 7: the phonon energy initially
oscillates but eventually settles down to a finite constant
value.

Can we show that this asymptotic value of the phonon
energy is a quantum phenomena? If so, it should vanish in
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FIG. 7. �Color online� Average energy transferred to the oscil-
lator as a function of time and left Fermi level for fixed values of
�0=0.5, �FR=0, �=0.01 and for different values of coupling
strength: �a� �=0.02 and �b� 0.08. Units: all the parameters have
same dimension as of ��0.
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FIG. 8. Fourier-Laplace transforms �a� ��nG̃n,n
� ���2 and

�b� ��nn�0G̃n,n
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ferent values of the left Fermi level �FL
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strength �=0.08. Parameters: �0=0.5, �FR=0, ��0=0.1, �
=0.001. Units: all the parameters have the same dimensions as ��0.
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the classical limit in which �� in the mechanical oscillator
part of the Hamiltonian in Eq. �1� goes to zero, while � in the
electronic part is held constant. To study this limit, we must
first make sure that ���0 is the smallest energy scale in the
problem, ���0��. We have plotted the asymptotic phonon
energy as a function of Y = ��

� in Fig. 9 for fixed values of
tunneling �=1, �FR=0, �FL=1, and coupling strength �
=0.05. We see that the long-time limit of the energy of the
quantum nanomechanical oscillator clearly scales as ��2. We
conclude that the long-time dynamics of the classical oscil-
lator is always zero and hence that the behavior of the quan-
tum oscillator is a purely quantum phenomenon. There is no
energy transfer between electrons and oscillator when the
oscillator is in one of its quantum eigenstates.

Finally, in Fig. 10, we have shown the Fano factor as a
function of time for two different values of �=0.02, �
=0.08 and for fixed values of �=0.01, �FR=0, �FL=1. In
the limit of weak coupling, the nanomechanical oscillator
shows thermal-like behavior and Poissonian statistics while
in the limit of strong coupling, its dynamics is nonthermal
which leads to super-Poissonian statistics. In this figure, the

short-time behavior is always thermal, but this is trivial as
the nanomechanical oscillator is initially in its ground state.

In conclusion, we have found mixed and pure states in our
results which confirm the quantum dynamics of our model
with the following justifications: in a classical mechanical
oscillator model,14–16,46 all states give rise to a time-
dependent potential. Hence, all states of the classical me-
chanical oscillator are damped. Thus, we confirm a quantum
dynamics of the nanomechanical oscillator that will be help-
ful for further experiments beyond the classical limit to de-
velop better understanding of NEMS devices.

VII. SUMMARY

In this work, we analyzed the time-dependent quantum
transport of a resonant tunnel junction coupled to a nanome-
chanical oscillator by using the nonequilibrium Green’s func-
tion approach without treating the electron phonon coupling
as a perturbation. We have derived an expression for the full
density matrix or the dot population and discuss it in detail
for different values of the coupling strength and the tunnel-
ing rate. We derive an expression for the current to see the
effects of the coupling of the electrons to the oscillator on the
dot and the tunneling rate of electrons to resolve the dynam-
ics of the nanomechanical oscillator. This confirms that elec-
trons resolve the dynamics of nanomechanical oscillator in
the regime �e��Osc while they do not in the opposite case
�e��Osc. Furthermore, we discuss the average energy trans-
ferred to oscillator as a function of time. We also discuss the
Fano factor as a function of time, which shows thermal be-
havior and Poissonian to nonthermal and super-Poissonian
behaviors. We have found dynamics of the nanomechanical
oscillator, pure and mixed states, which are never present in
a classical oscillator. These results suggest further experi-
ments for NEMS to go beyond the classical dynamics.
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APPENDIX

The particle current I� into the interacting region from the
lead is related to the expectation value of the time derivative
of the number operator N�=��jc�j

† c�j as24,34–36

I��t� = − e� d

dt
x� =

− ie

�
��H,x�� , �A1�

I��t� =
e

�
�G0,�

� �t,t�V�,0�t� − V0,�
� �t�G�,0

� �t,t�� , �A2�
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� and for fixed values of �0=0.5, t=1000, �FR=0, �FL

=1, �=1, and �=0.02. Units: all the parameters have same dimen-
sion as of ��0.
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where we have the following relations:

Go,�
� �t,t� =
 dt��G0,0

r �t,t��V0,��t��g�,�
� �t�,t�

+ G0,0
� �t,t��V0,��t��g�,�

a �t�,t�� , �A3�

G�,0
� �t,t� =
 dt��g�,�

r �t,t��V�,0�t��G0,0
� �t�,t�

+ g�,�
� �t,t��V�,0�t��G0,0

a �t�,t�� , �A4�

where g�,�
r,�a�,����t , t�� refers to the unperturbed states of the

leads and given as

g�,�
r �t,t�� =

1

N
�

j

g�,j
r �t,t��

= − in���t − t��

−�

+�

d�� exp�− i���t − t��� ,

with the fact that � j �	−�
+�Nn�d��, with n� being the con-

stant number density of the leads and other uncoupled
Green’s function in the leads are

g�,�
a �t,t�� =

1

N
�

j

g�,j
a �t,t��

= + in���t� − t�

−�

+�

d�� exp�− i���t − t��� ,

g�,�
� �t,t�� =

1

N
�

j

f�����g�,j
� �t,t��

= 

−�

+�

d��f�����in� exp�− i���t − t��� .

Now using Eqs. �A3� and �A4� in the Eq. �A2� of current
through lead � as

I��t� =
e

�

 dt� Tr��G0,0

r �t,t��V0,��t��g�,�
� �t�,t�

+ G0,0
� �t,t��V0,��t��g�,�

a �t�,t��V�,0�t�

− V0,�
� �t��g�,�

r �t,t��V�,0�t��G0,0
� �t�,t�

+ g�,�
� �t,t��V�,0�t��G0,0

a �t�,t��� . �A5�

Using the fact that �0,0,�
r,�a�,����t� , t�

=V0,�
� �t��g�,�

r,�a�,����t� , t�V�,0�t�, we can simplify the above
equation as

I��t� =
e

�

 dt� Tr�G0,0

r �t,t���0,0,�
� �t�,t� + G0,0

� �t,t���0,0,�
a �t�,t�

− �0,0,�
r �t,t��G0,0

� �t�,t� −��0,0,�
� �t,t��G0,0

a �t�,t��� , �A6�

where �0,0,�
r,�a�,����t , t�� are nonzero only when both the times

�t , t�� are positive t , t��0. Although gr,�a��t , t�� is nonzero for
t�0, it is never required due to the way it combines with
�0,0,�

r,�a�,����t , t��. Here, we note that we require gr,�a��t , t�� from
Eqs. �14� and �15� for positive times only �t�0�. The first
integral on right-hand side of Eq. �A6� may be solved by
using Eqs. �13�, �14�, and �17� as

Tr

0

t

dt�G0,0
r �t,t���0,0,�

� �t�,t� =
− �

2

�
m



−�

�F�

d��

0

t

dt��0,m�0,m
� exp�− i��m − i���t − t���exp�− i���t� − t��

=
i�

2

�
m

�0,m�0,m
� 


−�

�F�

d���1 − exp�i��� − �m + i��t�
�� − �m + i�

�
=

i�

2

�
m

�0,m�0,m
� �ln��F� − �m + i�� − Ei�i��F� − �m + i��t�� , �A7�

where the final result is obtained using standard integrals.44

We note once again that special care is required in evaluating
the ln�x� and Ei�x� to choose the correct Riemann sheets in
order to make sure that these functions are consistent with
the initial conditions and are continuous functions of time
and chemical potential. This statement will also apply to all
further discussions.

The second and third integrals on right-hand side of Eq.
�A6� are written as

Tr

0

t

dt��G0,0
� �t,t���0,0,�

a �t�,t� − �0,0,�
r �t,t��G0,0

� �t�,t��

= i� Tr G0,0
� �t,t� .

This integral can be solved in the same way as for the dot
population. The final result is written as44
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i� Tr G0,0
� �t,t� =

�

2

�
�,m

�0,m�0,m
� �− �1 + exp�− 2�t��

��tan−1� �F� − �m

�
� +




2
� +

1

2
i exp�− 2�t�

��− Ei�+ i��F� − �m − i��t�

+ Ei�− i��F� − �m + i��t��

+
1

2
i�Ei�+ i��F� − �m + i��t�

− Ei�− i��F� − �m − i��t��� �A8�

and the fourth integral on right-hand side of Eq. �A6� can be
solved by using Eqs. �13�, �15�, and �17� as

− Tr

0

t

dt��0,0,�
� �t,t��G0,0

a �t�,t� =
�

2

�
m



−�

�F�

d��

0

t

dt��0,m�0,m
� exp�− i��m + i���t� − t��exp�− i���t − t���

=
− i�

2

�
m

�0,m�0,m
� 


−�

�F�

d���1 − exp�− i��� − �m − i��t�
�� − �m − i�

�
=

− i�

2

�
m

�0,m�0,m
� �ln��F� − �m − i�� − Ei�− i��F� − �m − i��t�� . �A9�

Using Eqs. �A7�–�A9� in Eq. �A6�, the final expression for
the current is written as

I��t� =
e�

2
�
�
m

�0,m�0,m
� �Im

1� + Im
2L + Im

2R� , �A10�

where components of current are written as

Im
1� = 2�tan−1� �F� − �m

�
� +




2
� −�i�Ei�+ i��F� − �m + i��t�

− Ei�− i��F� − �m − i��t��� ,

Im
2� = − �1 + exp�− 2�t���tan−1� �F� − �m

�
� +




2
�

−
1

2
i exp�− 2�t��Ei�+ i��F� − �m − i��t�

− Ei�− i��F� − �m + i��t�� +
1

2
i�Ei�+ i��F� − �m + i��t�

− Ei�− i��F� − �m − i��t�� ,

where in calculating the left current, we need Im
1L together

with both Im
2L and Im

2R whereas for the right current, Im
1L is

replaced by Im
1R.
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